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“High-Power, Efficient, Diode-Pumped Fiber Lasers for Air Force
Applications”

The UNM portion of this program focused on two areas, namely:

1) Efficient, wavelength-switchable fiber lasers for Air Force applications

2) The development of mid-IR sources, namely 3 um fiber lasers for pumping longer
wavelength sources for IRCM applications.

More specifically, we developed and/or demonstrated:

1. A precisely and rapidly wavelength-switchable 1.5 um fiber laser source with
switching times of ~18 s

2. A widely tunable wavelength-selectable fiber laser for 8 channels using an FBG
string for wavelength pinning with output powers of each channel of ~12 dBm (16
mW)

3. A broadly tunable wavelength-selectable source using a fiber Sagnac loop filter, with
over 25 wavelength-switchable channel outputs with precise 50 GHz channel spacing,
excellent output power uniformities of £0.8 dB over the whole tuning range, and very
large (65 dB) side mode suppression ratios

4. A single-mode’ tunable wavelength selectable fiber laser operating at 8 uniquely
selectable wavelength-channels with individual linewidths of <300 kHz in each
channel

5. That the optimal pump wavelength for “the 800 nm pump band” pumping of high-
power 3 um mid-IR fiber laser is 799+1 nm (as opposed to earlier reports implying an
optimal pump wavelength of 791nm)

6. Optimal designs for custom double-clad Er:ZBLAN fibers for power scaling of such
mid-IR lasers to average powers of >10 Watts

7. Compact diode-pumped Q-switched (both actively and passively) mid-IR fiber lasers.

I. Er:Silica 1.5 um novel wavelength-switchable fiber lasers

A. Precisely and rapidly wavelength switchable 1.5 um fiber laser source

We first focused on the design and demonstration of a narrow-linewidth fiber laser that
was switchable (at us speeds) to just two precise predesignated wavelengths in a manner
that it is extendable to a large number of wavelengths. Our approach consisted of the use
of two filters such that one filter (composed of a set of fiber Bragg gratings, FBGs)
generates a wavelength comb, and a second tunable filter (a fiber Fabry-Perot, FFP-TF)
selects the desired wavelength channel [1, 5, 14, 16]. This general scheme for switchable
fiber lasers can be implemented using linear, ring or multiple cavity configurations. The
configuration chosen for our first experiment is depicted in Fig. 1.

The two fiber Bragg gratings used had peak reflectivities of ~ 30 dB and 3 dB linewidths
of ~ 0.4 nm at center wavelengths of 1551.68 nm (A;) and 1554.10 nm (A;). The FFP
filter (Micron Optics) had a linewidth of 0.4 nm and a free spectral range of 40 nm,
corresponding to a finesse of ~ 1000. Isolators were placed inside the loop to ensure
unidirectional operation and to prevent feedback from wavelengths reflected off the




bandstop regions of the FFP transmission spectrum. The output spectra were measured
using an Ando AQ-6315A optical spectrum analyzer which has a resolution of 0.05 nm.

The speed of switching was measured by using a tunable bandpass filter and an isolator
in front of a 1 GHz InGaAs photodetector. The bandpass filter (Santec OTF-610, 3dB
BW = 0.3 nm) was tuned to one channel or the other, to give a 30 dB rejection ratio
between the two channels. Rapid switching between the two wavelengths was
accomplished with the use of a 1 kHz square wave source (~ 60 ns rise time) to drive the
tunable FFP. Fig. 2 depicts spectral data for two different settings of the voltage applied
to the PZT element of the FFP. Clear switching between wavelengths corresponding to
the peaks of the FBGs was easily observed. The 1551.76 nm (A;) signal was selected for
Ve = 33.6 V +/- 0.01 V, while the emission wavelength switched to 1554.17 nm (Az)
when the FFP voltage was = 34.1 V +/- 0.01 V. About 0.16 nm of fine-tuning, which
corresponded to ~30 mV changes in the tunable filter voltage (Vrrp), was observed
around the center wavelengths A; (1551.76 nm) and A, (1554.17 nm).

The switching time for switching between A; and A, (Fig. 3) was measured to be ~ 25 pus
(determined by the use of higher temporal resolution scales). For these experiments, the
capacitive loading at the FFP PZT inputs limited the FFP driver’s scan speed to several
tenths of a ms (typical manufacturer’s specification) for an entire FSR (~ 40 nm in our
case). As such, the switching time between the two wavelengths (separated by 2.41 nm)
is estimated to be ~ 18 ps.

B. Widely tunable (8 nm, Af=0.8nm) wavelength-selectable fiber laser using an FBG
string

We demonstrated a widely tunable (8 nm, Af = 0.8nm, OSNR > 60 dB) fiber laser based
on the use of FBGs for selecting wavelengths, by employing a design where the FBG
string entails proper sequencing order of FBG wavelengths [17]. The schematic of the
fiber laser design is shown in Fig. 4a. When the FBG string sequence was in the right
order, the output power uniformity was observed to be ~0.6 dB, as seen in Fig. 4b. Also,
the OSNRs improved to ~60 dB. The output powers for each channel was ~12 dBm (16

mW).

C. Broadly tunable wavelength-selectable source using a fiber Sagnac loop filter

A wavelength-selectable fiber laser using an all-fiber multi-wavelength grid filter (Fig.
5a) was constructed [3, 15, 16]. The laser design is based on a Sagnac birefringence loop
filter architecture. The filter has an ~1.6 dB insertion loss, 14 dB peak-to-valley
transmission ratios, and can be temperature tuned (Fig. 6) to a very precise match with
the ITU-WDM grid. Even though this was demonstrated for telecom applications, the
precise temperature tuning of wavelength will enable tuning such a laser precisely to the
absorption lines of species of interest. We successfully demonstrated (Fig. 5b) 25 channel
outputs with precise 50 GHz channel spacings, excellent output power uniformities of +/-
0.8 dB over the whole tuning range, and very large (65 dB) side mode suppression ratios.




D. Wavelength selectable fiber laser using tunable FBG

Using a tunable FBG in combination with a Fabry-Perot grid filter (either a 1 mm etalon
with 100 GHz free spectral range, or a fixed fiber Fabry-Perot filter with a 20 GHz free
spectral range), we demonstrated two distinct wavelength-agile sources with channel
spacings of 100 GHz and 20 GHz. The fiber laser consists of a ring cavity coupled to a
standing wave arm via a 3-port circulator, as depicted schematically in Fig. 7. The
recorded data is shown in Figs. 8 and 9.

E. Single-mode tunable wavelength selectable fiber laser

We designed and constructed a novel single-frequency wavelength-selectable source
based on a tunable Bragg grating connected to an Er:SiO, saturable absorber line-
 narrowing filter. The fiber laser consists of a “hybrid” sigma-shaped cavity with a ring
cavity coupled to a standing wave arm via a 3-port circulator, as depicted schematically
in Fig. 10. A glass etalon (2 mm thick, 50GHz FSR, 10dB transmission peak-to-valley
ratios) was inserted in the ring cavity to act as a wavelength-periodic transmission filter.

A key feature of the linear arm is that the counter-propagating waves of sufficient
intensity (40 kW/cm?) inside the saturable absorber set up a standing wave with
preferentially low-loss at a narrow spectral band centered at the peak wavelength of the
FBG. In combination with a low-finesse (~7) 50 GHz FSR intracavity glass etalon, the
linewidth narrowing effect was significant enough to enable singlemoded outputs at 8
uniquely selected wavelength-channels, as shown in Fig. 12. As the laser longitudinal
mode spacings were estimated to be ~3 MHz, we confirmed singlemoded emission via
both scanning Fabry-Perot experiments (20 MHz resolution) and self-heterodyne
measurements (300 kHz resolution) of the laser output (Fig. 11).

I1. High power mid-IR fiber lasers

Goal: Research and development of high-power diode pumped mid-IR lasers based on
Er-ZBLAN double-clad fibers.

A. Optimize the efficiency of Er:ZBLAN fiber laser

Output powers of the order of 1W were obtained by pumping double-clad erbium-doped
ZBLAN fibers at 791 nm so far. The reported slope efficiencies were 17% (when a highly
reflecting mirror was butt coupled against the distal end of the fiber) and 13% (with 4%
Fresnel reflections on both ends). 791 nm was assumed to be the optimum pump
wavelength for these experiments (which is true for single clad fibers where core
pumping is used). However in double clad fibers, the use of an inner cladding for the
pump radiation reduces the pump density and hence the excited state absorption (ESA)
from the lower laser level. We demonstrated that the optimum pump wavelength is
different for double-clad fibers as elucidated below.

A.1. Optimization of the pump wavelength in the 800 nm band for high power mid-
IR fiber lasers based on Er-doped double-clad fibers

The pump wavelength was optimized in 800 nm pump band for the attainment of high

slope efficiencies. Detailed studies were performed using both double-clad and single-




clad fibers and demonstrated that the slope efficiency increases from 13% to 17% (4%
Fresnel reflections from both ends) when the Er-ZBLAN double-clad fiber was pumped
at the optimized 799 nm pump wavelength.

A 10W all-wavelength Ar" laser was used to pump the Ti:sapphire laser and an output
power of ~2.0 W was obtained in the 800 nm band. For a rectangular double-clad fiber
with 20,000 ppm Er and 5,000 ppm Pr in ZBLAN, the largest mid-IR signal were
observed at a wavelength of 799 nm pump and was independent of the pump intensity
(Fig 13). The lasing threshold was 310 mW for 96% output coupler for this optimum
pump wavelength (Fig 14).

A.2. Optimization of the pump wavelength in the 980 nm band for high power mid-
IR fiber lasers based on Er-doped double-clad fibers

Even though we have optimized the pump wavelength in 800 nm pump band and have
obtained higher efficiencies (17% Fresnel reflections at both ends), because of the
smaller Stokes shift, the efficiency can be further increased when the Er:ZBLAN doped
fiber is pumped in the 980 nm pump band. As such, we also performed detailed studies to
optimize the pump wavelength using double-clad and single-clad fibers and demonstrated
a slope efficiency of 21% (4% Fresnel reflections from both ends) with respect to the
launched powers at the 976 nm pump wavelength.

Custom-designed double-clad fibers with core diameters of 13 um, an NA = 0.16, and of
ion concentrations 20,000 ppm Er and 5,000 ppm Pr in the core were used for these
studies. The largest mid-IR output powers were observed at a pump wavelength of 973
nm and this optimum pump wavelength was found to be somewhat independent of the
pump intensity (Fig 15). The lasing threshold was 140 mW for 96% output coupler with
the use of a near-optimum pump wavelength of 976 nm (Fig 16).

B. Design of custom fiber for high power mid-IR fiber lasers

In order to take advantage of cross relaxation at high concentrations of Er, as has been
demonstrated by our group, high doping density Er:ZBLAN double-clad fiber geometries
were designed to obtain powers >10W. The design parameters of double-clad Er-doped
ZBLAN fibers included a laser core NA of 0.16 (+/- 0.02) and a pump core NA of 0.55
(+/- 0.05). The core should be 15um (+/- 3 pm) and scattering loss for the core and pump
core should be <0.05 dB/m and the core dopant is erbium, at a concentration of 50,000

These double clad geometries will enable us to use inexpensive high power diode arrays,
such as 19-emitter or 49-emitter diode bars with total output powers of ~35 W at ~976
nm. The alignment of a novel beam shaping technique is in process to couple the high
power pump into the active fiber with a coupling efficiency of >75%.
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C. Compact diode-pumped passively Q-switched mid-IR fiber lasers

We have demonstrated passive Q-switching (7 ps pulsewidth, 35 kHz rep rate) of mid-IR
rare-earth doped fiber lasers by using a liquid gallium mirror as a saturable absorber [7, 8,
13]. A schematic of the experimental set-up is depicted in Fig. 17. It consists of a simple
Fabry-Perot cavity defined by the 4% Fresnel reflection off the pump end of the fiber,
and a rear mirror defined by a gallium:fluoride glass interface. The gallium was held in a
~3 mm diameter dimple machined into an aluminum block thermally contacted (using
silicone paste) onto a thermoelectric cooler. The 20,000 ppm ErZBLAN
(Thorlabs/KDD) double-clad fiber (L = 20m ) was pumped with a high power 790 nm
diode array from Optopower. The pulsewidths and pulse shapes were measured with a
fast (0.3 ns rise time) InAs photodetector.

When the Peltier cooler was set to temperatures ranging from 10 to 25 °C, Q-switching
was observed as depicted in Fig. 18a. Unstable pulsing or CW lasing was observed
outside the above-mentioned temperature range. For the data shown in Fig. 13a, the
launched pump power was 720 mW and the Ga mirror was set to a temperature of
12.7°C. At these settings, the observed pulsewidth was 7 us at a rep rate of 37 kHz. As is
consistent with the behavior of passively Q-switched fiber lasers, the laser's repetition
rate increased with pump power (Fig. 18b), while the pulsewidth had an inverse relation
with the pump intensity.

D. Actively Q-switched diode-pumped pulsed mid-IR fiber laser

We designed and constructed an actively Q-switched mid-IR fiber laser using an
intracavity acousto-optic modulator (AOM) for the Q-switching. The schematic
experimental setup is shown in Fig. 19. The AOM was made of Ge and had an aperture
of 2 mm with an ~85% switching efficiency between the zero and first order. The distal
end of the fiber was angle-cleaved and collimated using a sapphire AR coated ball lens.




The dependence of the peak powers and pulsewidths on the repetition rate and on AOM
pump powers were studied, as depicted in Fig. 20. A pulse energy of 800 nJ was obtained
when the pump power was ~2W; the corresponding pump repetition period was 80.4 s,
the peak powers was 590 mW and the 3 dB pulsewidth was 1.35 ps. The dependence of
the peak power and pulsewidth on the pump power were also studied, as shown in Fig.
21.
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Fig. 1: Schematic experimental setup of a multi-wavelength-switchable laser using a
tunable filter (FFP) and several discrete FBGs (each corresponding to a desired
“switching” wavelength).
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Fig. 2. Optical spectrum analyzer traces for (a) Vere = 33.6 V, and (b) Vrrp = 34.1 V.
Both wavelength scans range from 1550.50 nm to 1555.50nm, and the vertical scale is
8.0 dB/div.
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Fig. 3. Photodetector output as laser switches from A 1 to A, . A filter has been inserted
before the detector to pass A, and reject A; (30 dB relative attenuation). The horizontal
scale is 0.1 ms/div.
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Fig. 4 (a) Schematic of the A-selectable WDM source based on a string of FBGs
(b) P vs. A at 8 uniquely selected channels w/ P =11.99 dBm + 0.3 dBm.
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Fig. 7: Schematic of the laser design that was used for demonstrating a wavelength-
switchable fiber laser using a tunable FBG and an etalon grid filter.
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Fig. 10: Schematic of the laser design that was used for demonstrating single-mode
wavelength-switchable outputs

Fig. 11: Scanning Fabry-Perot traces of (a)
multimoded laser emission without line-
narrowing saturable absorber, and (b)
singlemoded emission with 5 m of Er:SiO,
line narrowing absorber
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Er:ZBLAN fiber laser
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Fig. 17. Schematic of our pulsed (passively Q-switched) mid-IR fiber laser using a butt-
coupled liquid gallium mirror

f (kHz)
(&%)
»

30 . . .
550 650 750 850

Launched 790 nm Pump (mW)

()

Fig 18: Pulsed operation characteristics of a passively Q-switched Er:ZBLAN 2.7 um
fiber laser, showing (a) 7 us pulsewidths (horizontal scale = 10 ps/div)
(b) the repetition rate as a function of the launched pump power.
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Fig. 19: Schematic experimental setup used for active Q-switching of a 2.7 um
Er:ZBLAN fiber laser
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Fig. 20: The dependence of pulsewidth and peak power on the pump repetition rate for

our actively Q-switched 2.7 um Er:ZBLAN fiber laser

19




Puisewidth (us)
i

O T T T ¥
0 0.5 1 1.5 2 2.5

Pump power (Watts)

500
450 -
400 -
350 A
300 -
250 -
200 -
150
100 -

50 +

Peak power (mW)

Pump power (Watts)

Fig. 21: The dependence of the pulsewidth and peak power on the pump power for our
actively Q-switched 2.7 um Er:ZBLAN fiber laser
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